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Abstract.  

Prediction and optimization of polymer properties and polymer composite properties are a 

complex and highly non-linear problem with no any easy method to predict polymer properties 

directly and accurately.  The effect of modifying a monomer (polymer repeat unit) on 

polymerization and the resulting polymer properties is not an easy task to investigate 

experimentally, given the large number of possible changes. We utilize a database of polymer 

properties to train the ANFIS, which accurately predict specific polymer properties.  In polymer 

composites, a certain amount of experimental results is required to train a well-designed ANFIS. 

The ANFIS approach for predicting certain properties of polymer composite materials are discussed 

here. These include fatigue life; wear performance, response under combined loading situations, 

and dynamic mechanical properties. Prediction of effective thermal conductivity (ETC) of different 

fillers filled in polymer matrixes is proposed. The finding shows that ANFIS demonstrates high 

prediction accuracy as reflected by the small root mean square error (RMSE) value and high 

correlation coefficient (r) and coefficient of determination (R2) values. ANFIS prediction results are 

found to be compatible to linear regression estimations. The goal of this paper is to promote more 

consideration of using ANFIS in the field of polymer composite property prediction and design. 

The predicted results by ANFIS are in good agreements with experimental values. The predicted 

results also show the supremacy of ANFIS in comparison with other earlier developed models. 

Keywords: ANFIS, Prediction, Polymer properties, Polymer Composites 
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Properties, Effective Thermal Conductivity (ETC) 

1. Introduction 
Experiments on the production of different characteristics of polymer composites are 

normally conducted in the labs. Lab research can be very costly and time consuming. Alternatively, 

researchers are looking into other methods of studying the properties of polymer composites 

produced by using computer application models. In our study presented in this paper, the physical 

properties of polymer composites modeled using ANFIS (Adaptive Neuro-Fuzzy Inference 

System). Identifying the suitable composition of polymer with other agents and filler in the 

production of polymer composites is essential in producing engineering products. The objectives of 

this study are: 

(i) to develop a computer application model ANFIS that can be used to find the suitable 

combination of polymer with other agents and filler in the production of polymer composites with 

different physical characteristics. 

(ii) to assess the ability of ANFIS in predicting the properties of polymer composites by 

comparison with Linear Regression prediction results. 

The proposed computer application prediction tool ANFIS is not to replace the conventional 

lab experiments or substitute the traditional statistical modeling techniques; instead it is to 

strengthen the present system by providing a simple simulation tool which can be useful in studying 

the input-output relationship in prediction of properties of polymer composites Besides being highly 

non-linear, there are a large number of parameters that need to be accurately defined if such systems 

are to be properly characterized. The application of polymer composites as engineering materials 

has become state of the art. To design the characteristics of polymer composites is the most 

important advantage. In order to meet a special target of engineering application, e.g. concerning 

one or several measurable material properties, polymer composites can be designed by selecting the 

correct composition and choosing the appropriate manufacturing process, as schematically 

illustrated in Fig. 1. Property investigation plays a key role in materials science to evaluate 

composites designed for special engineering applications. All three stages shown in Fig. 1 are not 

separated, but interconnected, and the integration can be summarized as composite design, 

processing optimization and property relationships. The first two fields correspond to the interaction 

between the selected compositions or the manufacturing process and the properties investigated, 

whereas the last relates to possible correlations between some simple measured parameters (e.g. 

modulus, strength and failure strain) and more complex properties (e.g. fatigue, wear, combined 

loading and creep). The understanding of all these relationships is important in composite 
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materials science, in order to meet the requirements for particular engineering applications. 

Modeling of these relationships generally involves the development of a mathematical tool derived 

from experimental data; once established it can significantly reduce the experimental work involved 

in designing new polymer composites. For this reason, ANFIS has recently been introduced into the 

field of polymer composites.  

 
Fig. 1. Schematic presentation of composition selection, manufacturing process, and property 

investigation in composite materials science. 

 

Polymer composites with high thermal conductivity and low dielectric constant are highly 

desirable for use in various applications, such as electric stress control, electromagnetic shielding, 

and higher storage capability of the electric energy. Polymer matrixes are commonly used such as 

polyethylene, polypropylene, polyurethane, polyvinyl chloride etc. which are good thermally and 

electrically insulators. Due to the increasing use of composite materials in many industrials sectors, 

including transformation, electronic, and energy supply and production, there is a renewed interest 

in simulation techniques to estimate the ETC of fiber and particle filled polymer composites. 

Dependence of the ETC of these materials on porosity, shape factor and packing of the particles is a 

matter of concern to engineers, mathematicians, and physicists. Thermal conductivity of boron 

nitride (BN) reinforced high density polyethylene (HDPE) composites was investigated under a 

special dispersion state of BN particles in HDPE, and together with the influence on thermal 

conductivity of particle sizes of filler used by Zhou et al. Xu et al.  investigated the use of 

aluminum nitride (AlN) and poly-vinylidene fluoride (PVDF) as the matrix. Gu et al. investigated 

the content of AlN influencing the thermal conductivity and ultimate mechanical properties of AlN/ 

linear low-density polyethylene (LLDPE) composites. Adaptive neuro-fuzzy inference system 

(ANFIS) has recently been introduced to predict the effective thermal conductivity of metal/non-

metal filled polymer composites. The fillers used most frequently are particles of carbon, aluminum, 

copper, brass, graphite and magnetite. By the addition of fillers to polymer matrix the thermal 
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conductivity of polymers can be increased remarkably. In this study, high-density polyethylene 

(HDPE), low-density polyethylene (LDPE), linear low-density polyethylene (LLDPE), and 

polyvinylidene fluoride (PVDF) with different metals/non-metals such as boron nitride (BN), 

copper (Cu) and aluminum nitride (AIN) are used as inclusions, because of its superior mechanical 

and physical properties. Here the variation of ETC of HDPE/BN composites with volume fraction 

of filler, the variation of ETC of LDPE/Cu composites with volume fraction of filler, the variation 

of ETC of LLDPE/Cu composites with volume fraction of filler, the variation of ETC of 

PVDF/AlN composites with volume fraction of filler and the variation of ETC of LLDPE/AlN 

composites with volume fraction of filler have been studied. HDPE is one of the most widely used 

commercial polymers. However, its toughness, weather resistance, and environmental stress 

cracking resistance are not good enough which limits its applications in many high-technology 

areas. Reinforcing HDPE with fillers (viz., aluminum and copper particles, short carbon fibers, 

carbon, graphite, aluminum nitrides and magnetic particles) has been found to improve its 

properties. Low-density polyethylene (LDPE) is a thermoplastic made from petroleum. Compared 

with LDPE, LLDPE possesses better strength, toughness, heat-resistance, cold resistance, 

environmental stress cracking resistance, and tearing resistance properties. Rule-based modeling, 

specifically using fuzzy logic rule is a soft-computing tool-based approach to construct a model for 

the systems that are highly complex and exhibit non-linear behavior in nature, for which no well-

defined mathematical expression(s) exist. The effectiveness of the ANFIS approach is extensively 

tested by comparing its results with those obtained in real experimentations as well as with those of 

various existing empirical/semi-empirical models re-ported in literature. 

 

2. Application of ANFIS in composite materials science 
For materials research, a certain amount of experimental results is always needed first to 

develop a well performing ANFIS, After the ANFIS has learned to solve the problems based on 

these datasets, new data from the same knowledge domain can then be put into the trained neural 

network, in order to output realistic solutions. The process of creating ANFIS for materials research 

can, therefore, be summarized in terms of the following stages: 

1. Database collection: analysis and pre-processing of the data. 

2. Training of the neural network: this includes the choice of its architecture, training 

functions, training algorithms and parameters of the network. 

3. Test of the trained network: to evaluate the network performance. 

4. Use of the trained ANFIS for simulation and prediction. 
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The greatest advantage of ANFIS is its ability to model complex non-linear, multi-

dimensional functional relationships without any prior assumptions about the nature of the 

relationships, and the network is built directly from experimental data by its self-organizing 

capabilities.  

Evaluation of the ANFIS method 

A dataset of measurement results will usually be divided into a training dataset and a test 

dataset. The training dataset is used to adjust the weights of all the connecting nodes until the 

desired error level is reached. Thereafter, the network performance is evaluated by using the test 

dataset. The quality of the prediction can normally be characterized by the root mean square error 

(RMSE) of the predicted values from the real measured data. The smaller the RMSE of the test 

dataset is the higher, is the predictive quality. 

 

3. ANFIS for polymer composites 
Fatigue life 

Fatigue is one of the most complicated problems for fiber composites, and failure 

mechanisms are still not well understood. Extensive tests must be carried out because of the absence 

of a well-defined failure criterion that can be used to predict fatigue failure in polymer composites. 

ANFIS offer the possibility of developing models that will predict the behavior of composites 

without being linked to mechanistic arguments.  

Unidirectional (UD) composites 

It seems that the fiber orientation in UD composites plays a key role in fatigue performance. 

Applying fiber orientation as an input improves the ANFIS predictive quality significantly, even 

with a relatively smaller dataset. In order to improve the prediction accuracy, ANFIS was 

considered here using the same database employed in previous literatures. 

Laminate composites 

Three fatigue parameters, peak stress, minimum stress and probability of failure, and four 

monotonic mechanical properties, tensile strength, compression strength, tensile failure strain and 

tensile modulus, were selected as the ANFIS inputs, which were applied to predict the fatigue life of 

the composites as the output. ANFIS was finally optimized by evaluating the changes in RMSE of 

ANFIS output with the number of neurons in the intermediate layers. Once a well-trained ANFIS 

was obtained, the possibility for predicting fatigue life of new materials could be analyzed. Further, 

samples of two other materials, a fifth CFRP (HTA/982) laminate and a GFRP (E-glass/913) 

laminate of similar structure, were tested with regard to their mechanical and fatigue properties.  
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Wear of composites 

The dataset are obtained from fretting tests with various material compositions under 

different wear measuring conditions. An ANFIS is proposed with the output of wear volume; the 

inputs were mechanical properties and test conditions, i.e. compressive strength, compression 

modulus, compressive strain to failure, tensile strength, tensile strain to failure, impact strength, 

environmental testing temperature, initial load, average load and average velocity. The design and 

the training of the ANFIS were performed using the ‘ANFIS Toolbox’ of MATLAB.  

Dynamic mechanical properties 

An ANFIS approach has been proposed for the complex problems of fatigue, wear and 

combined loading failure discussed earlier. Nevertheless, it is also interesting for dealing with some 

relatively simple material problems, which will be of help to understand the characteristics of 

ANFIS for polymer composite applications. Large training data are needed to reach a predictive 

quality to that in a one-output ANFIS.  

Processing optimization 

In this study, a Kohonen self-organizing map type of neural network was applied to classify 

the measured dataset. Another approach in a similar direction was performed for the optimization of 

the polymerization process of polyamide 6.6 by Nascimento and Giudici. It was shown in literatures 

that the optimal cure cycles of the ANFIS prediction were reasonably accurate in comparison of the 

mean-square-error to the results based on the numerical process models. The use of the ANFIS in 

lieu of the numerical models reduced the computational time for process simulations by several 

orders of magnitude. 

  

4. Data Set and ANFIS  
We concentrate on polymer composites properties (mechanical, thermal, magnetic, optical, 

electrical, environmental and deteriorative) and the relationships with their structures (microscopic, 

mesoscopic and macroscopic). The prediction of polymer properties from just the structure of the 

monomer is somewhat unreliable. But trained ANFIS that are given optimized input data do an 

excellent job of characterizing a new modified polymer.  

Polymer Database 

The polymer database we used was selected carefully so as to include all types of polymers 

available. Within each category, several different types of polymers were included to provide a 

comprehensive set of data. The total data set consisted of 400 individual polymers. For each 

polymer, information stored included its molecular weight (poly-dispersity), mechanical and 
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thermal properties, chemical structure, and data reliability number. 

Polymer Properties Selected 

Impact resistance is very likely the most desired property of an engineering plastic. One 

indicator of good impact resistance is the Tα / Tγ  ratio and the dynamic elastic modulus. The higher 

this ratio is, the better the impact resistance is. However, high impact resistance with almost no 

elastic properties results in a brittle polymer that has no commercial use. Therefore, in the complete 

description of the overall mechanical properties of a polymer these properties must be included.  

ANFIS and Linear Regression Models  

Fuzzy systems and Artificial Neural Networks are computer application approaches that 

have been widely applied in various domains. The expressiveness of fuzzy if-then rules using 

linguistic variables can be combined with the learning capability of neural networks to produce 

Fuzzy Neural Network models. The input attributes of the developed ANFIS system are the 

ingredients needed to produce polymer. These imprecise attributes are called fuzzy linguistic 

variables and expressed as fuzzy linguistic labels such as Low (A1), Medium (A2) and High 

(A3).The research methodology undertaken is summarized in Fig.2. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.2 Summary of the research methodology. 

 

The ANFIS model under consideration is a multi-input single-output (MISO) system with 

four inputs and one output. ANFIS and linear regression prediction accuracies are measured using 

the Root Mean Square Error (RMSE). The ANFIS structure generated in this study utilizes fuzzy 
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clustering of the input and output data sets as well as the bell-shape membership function. Thus the 

number of rules is equal to the number of output clusters. In order to minimize the over fitting of the 

model developed, the complete data set was split into a training (50%) and testing data set (50%). 

The ANFIS model was first trained using the training data set followed by validation process using 

the remaining data. The errors associated with the training and checking processes are recorded. 

ANFIS training was found to converge after training with 95 epochs as shown in Fig.3. RMSE for 

both the training and testing of ANFIS are very small which reflects the ability of ANFIS to capture 

the essential components of underlying dynamics governing the relationships between the input and 

the output variables. Fig.4 shows the architecture of 4-input one-output ANFIS structure. The 

computation of membership functions (MFs) parameters is facilitated by a gradient descent vector. 

 

 

Fig.3 ANFIS training converges after 95 epochs. 

 

Fig.4 ANFIS architecture for a four input single-output Sugeno-fuzzy model. 

ANFIS parameters are adjusted as to reduce the error measure defined by the sum of the 
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squared difference between the actual and desired output. The root mean square error (RMSE) is 

calculated using 

 
Where At and Ft are actual and fitted values, respectively and N is the number of training or 

testing sample. The parameters associated with MF’s will change through the learning process of 

ANN. The output of the nth node is given in Eq. (2). 

Layer 1: Every node in this layer i is an adaptive node with a node function 

          

 
Where m and n are the inputs to node i and A1,….i are the linguistic labels such as average, 

good, excellent associated with this node.  O1
Ai is the membership grade of fuzzy set A1,….i and it 

denotes the degree to which the given inputs m or n satisfies the quantifier At. The membership 

grade can be calculated using Eq. (3) 

 

Where ai, bi, ci is the parameter set of a bell-shape figure. Parameters in this layer are 

referred as premise parameters. 

Layer 2: Every node in this layer is a fixed node and the output is the product of all the incoming 

signals presented by Eq. (4). 

 
Each node of output represents the firing strength of a rule. 

Layer 3: Every node in this layer is fixed. The nodes in this layer normalizes the weight functions 

by calculating the ratio of the ith rule’s firing strength to the sum of all rules’ firing strengths using 

Eq.(5). 

 
 

Layer 4: The nodes in this layer are adaptive nodes. The output of this layer are represented as 
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Where wi is a normalized firing strengths from Layer 3 and ( Pi, qi,… mi, ri ) are the 

parameter sets referred as consequent parameters. 

Layer 5: The single node in this layer labelled Σ computes the overall output. The output is 

calculated 

using Eq.(7). 

 
Fuzzy reasoning which is made up of fuzzy if-then rules together with fuzzy membership 

functions is the main feature of fuzzy inference systems (R. Jang, 1993). Fuzzy reasoning derives 

conclusions from the set of rules which are either data driven or provided by experts (E. Neilsen, 

1991). Fig.5 shows the reasoning procedure for a first order Sugeno fuzzy model. Each rule has a 

crisp output and the overall output is a weighted average. For example; 

“If Input-1 is High and Input-2 is Low and Input-3 is Medium and Input-4 is Low THEN the output 

MF1 will be Medium is a complete rule defining the relations of input and output linguistic 

variables”. 

 

 
Fig.5 (a) Fuzzy reasoning procedure for Sugeno model of physical properties of degradable plastics  

(b) If-Then rules derived by ANFIS. 

 

The rule set given below illustrates the reasoning mechanism and the corresponding 

equivalent ANFIS architecture where the nodes of the same layer have similar functions. 
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5. Result and Discussion 
Initially the training data set was used to develop ANFIS models with 2-input, 3-input and 

4-input. The models were run for 800 epochs before the best models are identified based on the 

smallest RMSE values. Next, the testing data set are fed into the trained ANFIS models. ANFIS 

outputs are recorded and the error is calculated by comparing ANFIS predicted values with the 

actual lab values. Similar training data sets are used to generate linear regression equations which 

are then tested on similar testing data set as used for ANFIS. Linear regression outputs are recorded 

and the error is also calculated by comparing linear regression predicted values with the actual lab 

values. Table1 shows observed data, predicted data and percentage error in training ANFIS for 

prediction of dielectric constants of various polymers. 

 

Table.1. Observed data, Predicted data and Percentage Error in training ANFIS 

Die electric Constants 

Name of Polymer Observed Data Predicted Data Error % 

Poly(tetrafluoroethylene) 2.00 1.87 6.50 

Polyisobutylene 2.23 2.32 -4.00 

Polyethylene 2.30 2.19 4.80 

Polypropylene 2.30 2.41 -4.80 

Polyisoprene 2.40 2.37 1.70 

Polybutadiene 2.51 2.44 2.80 

Polysiloxane 3.04 2.87 5.60 

Poly(vinyl acetate) 3.50 3.39 3.10 

Poly(methyl methacrylate) 3.60 3.06 15.0 

Poly(oxymethylene) 3.70 2.54 31.4 

Polyacrylonitrile 6.50 4.12 36.6 

Poly(vinyl alcohol) 7.80 3.25 58.3 

Poly (vinylidenefluoride) 8.40 3.04 63.8 

 

All ANFIS and linear regression predicted outputs on the physical properties of polymer are 

recorded and analyzed. Tables 2 tabulate the RMSE values for the prediction of Melting Point, Melt 

Flow Index and Density of polymer. The best predictor set (Optimized) is determined based on the 

smallest RMSE values. The results showed that ANFIS model prediction has very low RMSE 

values which indicate high prediction accuracies in predicting the physical properties of polymer. 
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Other combinations could also be predicted using the developed ANFIS model to suit the 

needs of the polymer industry. ANFIS prediction outputs are found to be compatible to linear 

regression estimations. 

These must be predicted extremely accurately for predicting miscibility. We have seen that 

the ratio Tα / Tγ  is extremely sensitive and important to predicting good mechanical properties. The 

main advantage of this comparison is that it enables us to select ANFIS that train quickly and 

provide acceptable results as compared to the best network we found. In Figure 6, points on the 

straight line indicate that the actual and predicted output were identical. If most of the points lie on 

this line, there is a danger of memorization and lack of generalization by the network. Similarly, 

wide deviations from the straight line indicate a poorly trained ANFIS that may not give accurate 

predictions. 

 

Table 2: RMSE values of ANFIS models for the prediction of Melt Flow Index, Melting Point and 

Density. 

Input RMSE 
Melt Flow Index 

RMSE 
Melting point 

RMSE 
Density 

Train Test Train Test Train Test 

Polyethylene  0.0050  0.0049 0.0991  0.1519  0.0056  0.0055 

Polypropylene  0.0259 0.0239 0.3581 0.3359 0.0279 0.0266 

Polyisoprene  0.0144 0.0157 0.5764 0.5545 0.0117 0.0123 

Polybutadiene  0.0348 0.0342 0.2905 0.3109 0.0409 0.0385 

Polysiloxane  0.0155 0.0187 0.4799 0.5120 0.0134 0.0139 

Poly(vinyl acetate)  0.0197 0.0183 0.4754 0.5168 0.0177 0.0176 

Poly(methyl 
methacrylate)  

0.0030	
   0.0030	
   0.0820	
   0.1344	
   0.0043	
   0.0044	
  

Poly(oxymethylene)  0.0030	
   0.0030	
   0.0820	
   0.1343	
   0.0043	
   0.0044	
  

Polyacrylonitrile  0.0030	
   0.0030	
   0.1089	
   0.1639	
   0.0043	
   0.0044	
  

Poly(vinyl alcohol)  0.0030	
   0.0030	
   0.0820	
   0.1344	
   0.0043	
   0.0044	
  

Poly(vinylidenefluoride)  0.0030	
   0.0030	
   0.0820	
   0.1344	
   0.0043	
   0.0044	
  

 

Predicted Properties 

Table 2 gives the results when the final selected ANFIS model is used. We found that for 

these modifications better Tα/Tγ ratios and dynamic mechanical modulus values were 
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predicted as compared to the parent polymers. On the basis of these results, we were able to 

conclude that both steric factors, and the intra- and intermolecular polarities of the polymer play a 

vital role in the final outcome of the prediction of the mechanical properties of the polymers tested. 

 

 

Fig. 6: Actual versus predicted output when final ANFIS model is applied to the 96 testing set. 

Table 2: a) Results of applying the final model to 20 modified bisphenol-A polycarbonates. b) 

Results of applying the final model to 15 modified poly (2, 6-dimethyl-1, 4-phenylene oxide) 

Monomer  Dynamic Modulus 

(200C, dynes/cm2) 

(a)   

Modification PC-1 3.13 5.67x109 

Modification PC-2 2.70 5.22x109 

Modification PC-3 2.74 5.38x109 

Modification PC-4 3.37 6.39x109 

Modification PC-5 2.58 5.06x109 

(b)   

Modification PPO-1 1.98 6.32x109 

Modification PPO-2 2.29 6.59x109 

 

The dielectric constants of polymers  

The dielectric constants of polymers used in this study were obtained from the literature 
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(Brandrup and Immergut, 1975). Out of the available 13 conductive polymers, 12 were used for 

training and one was left for testing or to validate the training. In the next run, a different set of 12 

polymers was used for training, and the remaining polymer was used for testing. A total of 13 sets 

of training were conducted in this manner and the results have been presented in Fig. 7.  

However, when the dielectric constant data was large, the percent error was also getting 

large. The reason for this, we feel, was the small number of compounds tested. If you don't provide 

enough information to train the ANFIS, it won't learn properly. 

Polymer Composites 

Thermal conductivity of boron nitride reinforced high density polyethylene composites was 

investigated under a special dispersion state of boron nitride particles in high density polyethylene, 

and together with the influence on thermal conductivity of particle sizes of filler used by Zhou et al. 

Xu et al.  investigated the use of aluminum nitride (AN) and poly-vinylidene fluoride (PvF) as the 

matrix. Gu et al. investigated the content of AN influencing the thermal conductivity and ultimate 

mechanical properties of AN/ linear low-density polyethylene (LldP) composites.  

 

 
Fig.7 Correlation between the actual values and predicted values by the ANFIS of dielectric 

constant. 

 

In this study, high-density polyethylene (HdP), low-density polyethylene (LdP), linear low-

density polyethylene (LldP), and polyvinylidene fluoride (PvF) with different metals/non-metals 

such as boron nitride (BrN), copper (Cu) and aluminum nitride (AN) are used as inclusions, because 

of its superior mechanical and physical properties.  

Effective Thermal conductivity of boron nitride reinforced high density polyethylene composites 

Fig.8 shows the variation in experimental values of effective thermal conductivity of boron 
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nitride reinforced high density polyethylene composites and those predicted by the ANFIS, and 

other theoretical models with volume fraction of dispersed phase (filler). It is seen that with the 

increase in filler loading the ETC of the composite increases. The ETC of 1.129 W/m K is achieved 

by ANFIS for HdP containing 29 % volume fraction of BrN, more than four times of pure HdP.  

Effective Thermal Conductivity of Copper reinforced low-density polyethylene and linear low-

density polyethylene Composites  

Fig.9 show the experimental values of effective thermal conductivity of LdP/copper 

composites and those predicted by the ANFIS and other theoretical models over a wide range of 

volume fraction of dispersed phase (filler) between 0% to 24%. It is clear that the effective thermal 

conductivities. 

 

 

 Effective Thermal Conductivity of polyvinylidene fluoride with aluminum nitride Composite  

The effective thermal conductivity of PvF/AN composites with volume fraction of dispersed 

phase (filler) over the range between 0% to 75% is shown in Fig.10. It is noticed that the effective 

thermal conductivity of the composite increases with the increase in filler loading, except that the 

ETC decreased when the AN volume fraction is increased from 70% to 75% (due to increase in 

porosity). The highest values of effective thermal conductivity 5.101 W/m K and 3.654 W/m K are 

predicted by ANFIS for PvF containing 70% and 75% volume fraction of AN, respectively. It 
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is also shown that the calculated results by the Singh et al. equations are in better agreement with 

the experimental and ANFIS results. 

 

Effective Thermal Conductivity of linear low-density polyethylene with aluminum nitride 

Composite  

Fig.11 shows the variation in experimental ETC of LldP/AN composites over a wide range 

of volume fraction of dispersed phase (filler) between 0% to 32% and those predicted by the ANFIS 

and calculated by various model with volume fraction of dispersed (filler) phase. It is clear that the 

effective thermal conductivities of composites are higher than that of pure LldP matrix. The ETC of 

composites increases considerably with the increase of volume fractions of inclusions. The results 

are satisfactory in agreement with the experimental and ANFIS results.  

In Fig.8-11, it is noticed that the ETC of different metal/non-metal filled polymer 

composites increases with the increase in volume contents of filler in polymer composites. The 

enhancement in the effective thermal conductivity of present composites with increase in volume 

content of metal/non-metal is mainly due to more interaction between metal/non-metal particles as 

they come in contact with each other, resulting in the ease in transfer of heat and consequent 

enhancement of the effective thermal conductivity. Highly conductive different metal/ non-metal 

like BrN, Cu, and AN are used as fillers into polyethylene (HdP, LdP, and LldP) and poly-
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vinylidene fluoride (PvF) composites as matrix in this study. All the predictions of the ETC by 

ANFIS are in good agreement with the available experimental results and calculated by the Singh et 

al. model. Clearly, there are many benefits of using ANFIS for prediction, including the following: 

1) It is a general framework that combines two technologies, namely neural networks and fuzzy 

systems; 2) By using fuzzy techniques, both numerical and linguistic knowledge can be combined 

into a fuzzy rule base; 3) The combined fuzzy rule base represents the knowledge of the network 

structure so that structure learning techniques can easily be accomplished; 4) Fuzzy membership 

functions can be tuned optimally by using learning methods; 5) The architecture requirements are 

fewer and simpler compared to neural networks, which require extensive trails and errors for 

optimization of their architecture; and 6) ANFIS does not require extensive initializations through 

several random starts before training, as always happens in neural networks. Other advantages of 

the two-phase neuro fuzzy hybrid technique in the ANFIS model also include its nonlinear ability, 

its capacity for fast learning from numerical and linguistic knowledge, and its adaptation capability. 

4. Conclusions 
In this paper we had described the development of a data driven ANFIS model using real 

data set obtained from the polymer laboratory. The developed ANFIS is a soft computing approach 

utilizing a feed-forward multilayer neural network for fuzzy modeling. This study had shown that 

ANFIS models are highly robust and compatible. ANFIS models are found to have good prediction 

ability for the prediction of physical properties of polymer is recommended. It is noticed that the 

ETC of different metal/non-metal filled polymer composites increases with the increase in volume 

contents of filler in polymer composites. The enhancement in the effective thermal conductivity of 

present composites with increase in volume content of metal/non-metal is mainly due to more 

interaction between metal/non-metal particles as they come in contact with each other, resulting in 

the ease in transfer of heat and consequent enhancement of the effective thermal conductivity. 

Highly conductive different metal/ non-metal like BrN, Cu, and AN are used as fillers into 

polyethylene (HdP, LdP, and LldP) and poly-vinylidene fluoride (PvF) composites as matrix in this 

study. All the predictions of the ETC by ANFIS are in good agreement with the available 

experimental re-sults and calculated by the Singh et al. model. Max-well as well as Hamilton and 

Crosser models are calculated fairly well the ETC only for low concentration of present composites. 

The predicted results show that using a hybrid intelligent approach, in particular ANFIS, gives good 

prediction ac-curacies for the ETC of metal/non-metal filled polymer composites. The resultant 

predictions of effective thermal conductivity by the ANFIS agree well with the available 

experimental data. The ANFIS exhibit the capability to use for the predictions of effective 
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thermal conductivity of various types of tailored complex materials. 
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